Class: 17 | Genetically Modified Organisms

Natural selection, artificial selection, genetic modification & cloning all result in same thing –desired or most fit phenotypes, but the processes are different and have different ethical considerations. Predict offspring phenotypes & genotypesDifferentiate between natural selection, artificial selection & genetic modification & cloningAppreciate benefits of genetically modified organisms (GMOs)Clarify concerns about GMOsPrioritize biodiversity Genetics Worksheet & Readings

HS-ETS1 Engineering Design

ETS1.A: Defining and Delimiting an Engineering Problem ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution Students who demonstrate understanding can: HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. HS-ETS1-2. Design a solution to a complex real-world problem by breaking […]

HS-ESS3 Earth and Human Activity

ESS3.A: Natural Resources ESS3.B: Natural Hazards ESS3.C: Human Impacts on Earth Systems ESS3.D: Global Climate Change Students who demonstrate understanding can: HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include […]

HS-ESS2 Earth’s Systems

ESS2.A: Earth Materials and Systems ESS2.B: Plate Tectonics and Large-Scale System Interactions ESS2.C: The roles of Water in Earth’s Surface Processes ESS2.D: Weather and Climate ESS2.E: Biogeology Students who demonstrate understanding can: HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and […]

HS-LS4 Biological Evolution: Unity and Diversity

LS4.A: Evidence of Common Ancestry and Diversity LS4.B: Natural Selection LS4.C: Adaptation LS4.D: Biodiversity and Humans Students who demonstrate understanding can: HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has […]

HS-LS3 Heredity: Inheritance and Variation of Traits

LS3.A: Inheritance of Traits LS3.B: Variation of Traits Students who demonstrate understanding can: HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps […]

HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C: Ecosystem Dynamics, Functioning, and Resilience LS2.D: Social Interactions and Group Behavior Students who demonstrate understanding can: HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is […]

HS-LS1 From Molecules to Organisms: Structures and Processes

LS1.A: Structure and Function LS1.B: Growth and Development of Organisms LS1.C: Organization for Matter and Energy Flow in Organisms LS1.D: Information Processing Students who demonstrate understanding can: HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems […]