HS-PS2.B Types of Interactions

Newton’s law of universal gravitation and Coulomb’s law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4) Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric […]

HS-PS2.A Forces and Motion

Newton’s second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1) Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2) If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes […]

HS-PS1.C Nuclear Processes

Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HS- PS1-8) Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of […]

HS-PS1.B Chemical Reactions

Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. (HS-PS1-4),(HS-PS1-5) […]

Want to run your own science experiments?

Registration opens February 2, 2016 for next year’s Systems Biology and Genetic Research course at WaNIC!   Have you ever wanted to work in a research lab and run your own science experiments? This course will provide a yearlong exploratory journey into the field of STEM medical research. WaNIC will join Institute for Systems Biology, […]