HS-LS1.C Organization for Matter and Energy Flow in Organisms

The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5) The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as […]

HS-LS1.A Structure and Function

Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1) All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (HS-LS1-1) (Note: This […]

HS-ETS1.A Defining and Delimiting an Engineering Problem

 Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-ETS1-1) Humanity faces major global challenges today, such as the […]

HS-PS4.C Information Technologies and Instrumentation

Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5) source: http://www.nextgenscience.org/

HS-PS4.B Electromagnetic Radiation

Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3) When light or longer wavelength electromagnetic radiation is absorbed in matter, it […]

HS-PS3.D Energy in Chemical Processes and Everyday Life

Although energy cannot be destroyed, it can be converted to less useful forms – for example, to thermal energy in the surrounding environment. (HS-PS3-3), (HS-PS3-4) Solar cells are human-made devices that likewise capture the sun’s energy and produce electrical energy. (secondary to HS-PS4-5) The main way that solar energy is captured and stored on Earth is […]