Lesson 4 – Planning Cohesive Experiments
Course: Life Science, Integrated Science, STEM, BioChem, Marine Science
Unit: Ocean Acidification, Ecology, Biogeochemical Cycling
See Standards Addressed for all NGSS, WA State (Science, Math and Literacy), and NOAA Ocean Literacy Education Standards Connections. In addition to the aligned objectives linked above, for this lesson, here is a breakdown of:
- Systems scientists work together (collaborate) to build off of each other's experiments to achieve enough data and experimental evidence to understand complex relationships.
- Preparing and planning for experimentation is required for successful implementation of research.
- Experimental ideas often come from the needs and passions of humans.
- Systems thinking is a useful technique for understanding complex situations.
- Systems thinkers use systems diagrams as tools of their trade.
- There are many types of systems; these can be represented in many ways and have many different properties and forms, such as being in equilibrium, containing balancing loops, reinforcing loops, etc.
- Students collaborate to design experiments.
- Students refine and narrow a question based on a large, big picture question.
- Students build their hypotheses, make predictions, design how they will measure outcomes, list needed equipment/materials, and complete procedural flow charts and protocols.
Introduction: When teaching the topics of ocean acidification, climate change, ecosystems, and sustainability, helping students model the collaborative nature of science is an important endeavor. When tackling “big problems” scientists from different disciplines directly communicate and divvy up research into projects that best use available resources and lead to more comprehensive understanding. The goal of this lesson is to guide student groups as they plan their experiment and ultimately develop a class-wide, cohesive set of experiments that work together to answer the big question and their group’s individual sub-question. - Have students write down the main question in their notebook: What effect does the increasing atmospheric CO2 have on the ocean and its subsystems? - Lead a discussion first as a class that allows students to brainstorm how they can contribute by experimenting in your lab to this research question. You can also use a Think-Pair-Share here as an option. Questions to get them talking and thinking: --What could you measure in the lab, what outcome will you be hoping to observe or measure, what have you measured in previous labs, how will you know what you know? (Possible student answers: pH, amount of CO2, source of CO2, nutrient levels, rate of shell dissolution, mass, temperature, salinity, population count, optical density with spectrophotometers or fluorometer) - What evidence could help you advocate for your interest group? - What is your subsystem? Remind students that their subsystem should be pertinent to their interest group. - What systems component are you bringing into your experiment? For systems science we need a great deal of data and a variety of data. How are you working toward achieving both the large amount of data and variety? Also, we generally use multiple stressors in systems experiments. This means that instead of changing only one variable and keeping everything else constant, we allow for multiple variables. This mimics what occurs more naturally in nature. For instance, if you change the amount of light, temperature often changes with it. Instead of allowing one to change and unnaturally holding the other constant, we allow them to change as they may together. The way this is accomplished is through experimental design - ensure the data you gather allows you to trace back to what caused the outcome observed. - You can leave Slide 12 on the board to help remind students what needs to be completed as they prepare for their experiment. Also, having students follow this experimental plan procedure tends to lead to successful implementation of these types of labs in the classroom: (Please remove and replace any necessary text above that helps your students think of what they have completed as part of this module.) Depending on your students, they may need a worksheet to help them track their experimental planning and/or their discussion participation. One can be created by copying the text from the powerpoint slides to create a more guided experience. Scientists who are studying ocean acidification are generally very passionate about their research and more than willing to discuss their work with interested teachers and students. Through field testing, we learned that students love having a guest speaker Skype into the classroom. We suggest searching online to find scientists that study ocean acidification. Teachers or students can find and suggest someone to the class. Emails can be sent directly to that scientist giving a description of who you are and what you are interested in learning about. People are happy to spend 20 minutes talking to students about their work. You can contact us to talk to a scientist or reach out to the many other labs that work on ocean acidification. Here are just a few suggested groups who work on ocean acidification to get your search started: NOAA, Scripps Institution of Oceanography, University of Hawaii C-MORE, Stillman lab at Berkeley, University of Washington, Woods Hole Oceanographic Institute, Monterey Bay Aquarium Research Institute, etc. Many teachers and scientists participated in the creation of these lessons and content. Please view the list of credits for this work. For this lesson, these additional references are specifically noteworthy: 1. Keeley, P., Tugel, J. (2009). Uncovering student ideas in science: 25 new formatvie assessment probes (Vol. 4). Arlington, VA: NSTA Press. 2. See the Waters Foundation website for may systems thinking resources: http://www.watersfoundation.org 3. Photo of Brainstorming Wall submitted by Jennifer Duncan-Taylor of Port Angeles High School in WA.Instructional Activities
One to two 50-min periods
ADVANCED PREP
Lesson Specifics:
Experimental Plan: